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B6. THE PRESSURE DERIVATIVES
OF ELASTIC CONSTANTS:
MICROSCOPIC GRUNEISEN PARAMETERS

WILLIAM B. DANIELS

Princeton University

Abstract—The values of the elastic constants are of fundamental importance in any study of the lattice
vibrational excitations in crystals. They determine the dispersion relations in the non-dispersive region
of the spectrum and from these, the low temperature limit of the Debye temperature.

In a similar manner, the pressure dependencies of the elastic constants provide non-thermally deter-
mined data on the shift of these lattice vibrational energies with lattice compression, the so called micro-

in which o, is one of the vibrational
din¥V

normal mode frequencies and ¥V is the crystal volume. In the non dispersive region of the spectrum, simple

din C 1

7—"’- ot in which By is the bulk modulus and P the pressure. The

subscript m refers to a particular mode type, and C,, is the elastic constant associated with that mode
of propagation.

The quasi-harmonic oscillator model gives the result that the experimental Griineisen constant defined

scopic Griineisen parameters defined by the relation y; = —

1
considerations yield y,, = EY By

, where « is the volume coefficient of thermal expansion and the other terms have their
Z75Coy dino
Z,C,y dlnV
Einstein heat capacity of that mode at the temperature of observation.

At the present time, the pressure dependencies of the elastic constants provide the only direct measure-
ments of the y;. Somewhat surprisingly their values, used with an elastic continuum approximation
account quite well for y and its temperature dependence in many cases. The results of this approximation
are discussed, and evidence is presented concerning the magnitude of the temperature dependence of the
mode gammas, and the effects of a strong temperature dependence on the conclusions of the Quasi-
Harmonic Model.

aBV
by ye = o

usual meanings, is given by y; =

.y is the value of — of the j’th mode, and C,; is the

INTRODUCTION lation to Griineisen’s gamma:
THE microscopic theory of the temperature de- Q'ZN c
pendent equation of state of solids, introduces ,=1y’ oJ
anharmonicity parameters of the form vy; ve(T) = =y >
dlIn w; . . . . Z Coy
where w; is a lattice vibrational d=1

= T dnv
mode frequency and ¥ is the crystal volume.**®  in which C,; is the Einstein heat capacity of the
These “mode gammas”™ bear the following re- j’th mode at the temperature of observation. The
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G
in which « is the volume coefficient of thermal
expansion, By is the bulk modulus, C,/V the
heat capacity per unit volume of the crystal. In
this quasi-harmonic oscillator model, the tem-
perature dependence of Griineisen’s gamma
arises in existence of different values of y; for
different modes, coupled with changes in their
relative weights by the temperature dependent
mode heat capacities. In the case that all gam-
mas were equal, one would expect on this model
that Griineisen’s gamma would be rigorously
temperature independent. In the most general
spectral case, one would expect constancy of y¢
in the limit of classically high temperatures at
which C,; = k for all modes, and the expression
for y¢ reduces to the simple average of the y;:

3N

Griineisen parameter is defined by: ys =

and in the low temperature limit where only
continuum lattice vibrational states are excited,
and there is no change in the relative weighting
factors of various mode gammas. In this true 73

. dIn @©,
region y; reduces toyg = — AV where 6,
is the low temperature limit of the Debye tem-

perature.

Validity of the original assumption of con-
stancy of Griineisen’s gamma seemed well veri-
fied experimentally until recent years when im-
proved techniques of thermal expansion meas-
urement revealed large changes in s which ap-
pear at low temperatures.

SLATER’S GAMMA

Historically, there has been a distinct lack of
availability of values of individual mode gam-
mas, necessitating various approximations. The
Slater gamma represents an attempt to obtain
d In o,
dlnvV’
a non-thermally determined gamma with which

directly, i.e. from the definitiony; = —
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Table 1. High temperature values of
Griineisen’s Gamma and Slater’s

Gamma
Material Slater’s Griineisen’s

Gamma Gamma
Si 2°5 0-44
Ge 2¢1 072
Cu 26 2:0
Ag 28 2:4
Au 29 3-0
Na 1:5 114
Al 253 2:34
NaCl 27 1:55
KCl1 22 1-47
RbI 26 1-50

one could compare the value of the Griineisen
constant. The only experimental data availableat
that time was the extensive set of measurements
of volume vs. pressure by Bridgman from which
one could obtain in the bulk modulus and its
pressure derivative.

Referring to Fig. 1, we see that the frequency
of any particular normal mode j in the non-dis-
persive region of the spectrum is given by w;
= k;v where k; is the mode wave vector and v
the slope of the linear part of the dispersion curve
equal to the velocity of a sound wave of the
same mode type. The assumption was made that
the solid could be treated as an isotropic elastic
medium whence it was possible to obtain ex-
pressions for the velocity of longitudinal and
transverse waves in terms of the bulk modulus,
the density, and Poisson’s ratio as follows:

S \/l: 3(1 — 0)B,

. o(1 + o) ]
- \/[3(1 g 20)3,]
i 201 +0) |

where ¢ is Poisson’s ratio, and g the density of
the material. If Poisson’s ratio is assumed in-
dependent of volume, the result appears:

) LoydinBy
Wior 4F 2 dlnV 6




THE PRESSURE DERIVATIVES OF ELASTIC CONSTANTS

in which the fact that dlnk;/dIn ¥V = —1%,
dIng/dIn ¥ = —1 has been used. The Slater
gamma gives reasonably good agreement with
Gruneisen’s gamma at high temperatures, hav-
ing in general a value larger than y; as shown in
Table 1. Notable exceptions are silicon, ger-
manium and the zinc blende structure materials
where ys > y6.

GENERAL ACOUSTIC CONTINUUM
GAMMAS

Recent acoustic measurements of all of the
elastic constants of crystals as a function of pres-
sure® permits one to relax several of the as-
sumptions made above, namely the assumption
of elastic isotropy and that of pressure in-
dependence of Poisson ratios. That is, referring
again to Fig. 1, the slope of any dispersion curve
in the continuum region which is the velocity of

u=“—)'j-- C=pu

the dispersion curve.

2dinC __ By dC
C dRr

‘dinV
¢+ z.diowi | dinC _ 1
**% " dnv 2 dnv 6

For modes in the linear region of
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sound for waves of that mode type, is given by

o -
v = A/ —Q— where C'1s the adiabatic elastic con-

stant associated with the type of deformation
involved in propagation of the wave. For ex-
ample, the velocity of a longitudinal wave pro-
pagation along [100] of a cubic crystal is given

by(C,, /g)*}, that of a similarly propagating trans-

verse wave is given by (C“/gﬁ and the mode
gammas appropriate to each of these modes be-
come:

1 dinC, 1

JO0) = e e, 2

72 [100] 2 dlnV 6
$

1 diniC 1

J00] = e 08

yr [100] 2 dlnV 6

(The relation to the pressure derivatives is

P>0

P=0

|
|
|
|
i
|
|
|
|
|

g

FIa. 1. Dispersion curve indicating the effect

B.Z.B.s’

of pressure on a normal mode frequency.
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Table 2. Values of mode gammas in symmetry directions of cubic
crystals, together with their weighting factors v=> for low temperatures.
v~=2 in units 10-'® (cm/sec)3

Direction _3

of propagation (e L a1 vri’ v

[100] s (1-64) 033 (501) ' (5-01)
[110] 4 (1-30) 033 (5-01) - 9:76)
[111] ’ (1-21) 0-08 (7-47) i (7-47)

[100] f (8:39) 0-584  (22:4) g (22-4)
[110] g (6:33) 0-584  (22+4) Z (48:1)
[111] ’ (5-78) 0360  (359) “ (35:9)

[100] : 477 1-06 (111) 106 (111
[110] 1-36 (26-2) 106 (111) 1-06 (2138)
[111] 1-34 (22+5) 1-06 (400) 1-06 (400)

[100] 2-48 (13-4) 1-92 (41-4) 1-92 (41-4)
[110] 2:30 (8:8) 1-92 (41-4) 1-49 (243)
[111] 219 (7-8) 1-76 (105) 1-76 (105)

[100] 271 (25) 2-38 (108) 2:38 (108)
[110] 2:69 (17-7) 2-38 (108) 1-96 (569)
[111] 268 (16:0) 221 (263) 2:21 (263)

[100] 2-86 (31-9) 3:38 » (312) 3-38 (312)
[110] 3-:00 (26:1) 3-38 (312) 2:31 (1500)
[111] 3-03 (24:6) 294 (731) 294 (731)

[100] 2:28 3:97) 2:80 (29:3) 2-80 (29-3)
[110] 2:43 (8-61) 2-80 (29:3) 2:36 (39:5)
[111] 2:43 (3:63) 2:53 (35'6) 2:53 (35:6)

[100] 2:64 (9-81) 014 (72:2) 014 (72:2)
[110] 1-87 (11-55) 0-14 (72:2) 272 (43-8)
[111] 1-57 (12-26) 2:04 (50-9) 2:04 (50-9)
optic 1-20 3:61 3:61

[100] 2:18 (11-33) —074 (184) —074 (184)

[110] 1-42 179 —074 (184) 242 (41-9)
[111] 1-04 (21-6) 1:92 (59:5) 1:92 (59'5)
optic 074 2:61 2-61

[100] 2:53 (54:3) —1-06 (1447) —1-06 (1447)
[110] 191 (98-4) —1-06 (1447) 2:56 (186)
[111] 1-54 (128) 2:15 (273) 2:15 (273)

a. CHAPMANJ. C., Master thesis,Case Institute ofTechnology(1959),unpubhshed
b. McSHiMmIN H.J., J. acoust. Soc. Amer. 30, 314 (1957).

c. DANIELS W.B., Phys Rev. 119, 1246 (1960).

d. DANIELS W.B. and SmiTH Charles S., Phys. Rev. 111, 713 (1958).

e. Scumunck R.E. and SmitH Charles S., J. Phys. Chem. Solids 9,100 (1959).
f. Data prepared by Smita C.S. from LAZARUS D., Phys. Rév. 76, 545 (1949)
g. DanieLs W.B., Princeton Umversnty—unpubhshed
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dIn Cj;

dlnv ~ 7T do
thermal bulk modulus). Thus from these data
one can obtain directly a non-thermal measure
of the individual mode gammas for all modes in
the continuum region of the lattice vibrational
spectrum.

dIn C
i where By is the iso-

Table 2 contains values of y; of modes in cer-
tain branches of the acoustic spectrum of sev-
eral cubic crystals. The number in parentheses
following each entry is the reciprocal of the cube
of the velocity of sound which is the low tem-
perature weighting factor of the mode gamma
of that branch in units 10~'8 (cm/sec)—3.

The results in Table 2 demonstrate that in any
given crystal the values of mode gammas may
be even more anisotropic than the velocity of
sound e.g. in rubidium iodide the mode gam-
mas range from a value +2-56 for longitudinal

A waves propagating along [100] down to —1-06

“ror shear waves propagating along [100]. It is
also noteworthy that although the average
gamma does not vary strongly from material to
material, the range of values of mode gammas
does. Thus any attempt te find an “average an-
harmonicity parameter” to relate to a macro-
scopic anharmonic effect such as thermal con-
ductivity must concern itself not only with the
values of the parameters, but also with the na-
ture of the averaging process used. Also, with a
few exceptions, it may be seen that the gammas
of the transverse modes are algebraically smal-
ler than those of longitudinal modes.

SHEARD,® COLLINS,®> SCHUELE et al.‘® have
calculated limiting low and high temperature
values of Gruneisen’s gamma from various of
these data on an anisotropic continuum model.
Collins has in addition used this model to cal-
culate an approximate temperature dependence
of Gruneisen’s gamma. DANIELS'” has calcul-
ated the low temperature limit of y ¢ in Si and Ge

dIn @,

dlnV
the low temperature limiting value of the
Debye temperature. It was possible in this case to
interpolate in the tables of DE LAUNAY® to re-

using the relation y, = — where 0, is
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place the integrations used by the other authors.
Table 3 gives a summary of the results of these
calculations, compared with limiting low and
high temperature values of Gruneisen’s gamma
calculated by WHITE from thermal expansion
measurements made with an extremely sensitive
three terminal capacitance method.® In all the
cases where comparisons are possible, the agree-
ment of the experimental and calculated values
of y, is impressive. However, we shall return to
this point of agreement later. Agreement of the
high temperature limiting values is good in Si,
Ge, Na and the monovalent noble metals. Ana-
lysis of the entire curve of y¢; vs. T in Si and
Ge"9 reveals this agreement to be fortuitous.
In the alkali halides one would not expect an
averaging over acoustic modes alone to be re-
presentative of the behavior of the optical modes
as well so that the agreement in the case of NaCl
is more surprising than the disagreement in KCI.
We have attempted to estimate the values of
optic mode gammas in NaCl and KCl, using the
Szigeti Relations with MAYBURG's"'!? data on
the pressure dependence of the low frequency
dielectric constant, and data by BURSTEIN and
SmiTH'? on strain dependence of the index of
refraction, together with the pressure depen-
dences of the elastic constants. The effect of this
modification is toimprove the agreement in KCl,
and worsen the agreement in NaCl.

DISCUSSION

It appears from Table 3 that the low tempera-
ture limit of the Gruneisen constant is quite well
accounted for by the values of the pressure de-
pendencies of the elastic constants of those
crystals, using values of the constants and their
pressure derivatives measured at 300°K. The
question arises concerning the temperature de-
pendencies of the quantities dC/dP, here as-
sumed to be negligible. The only data bearing
on the subject are the classical measurements by
BRIDGMAN of pressure-volume relations in so-
lids.*® Many of these measurements were made
at two temperatures, 30 and 75°C. We have
studied these results in detail for the alkali hal-




WILLIAM B.DANIELS

Table 3. Comparison of experimental high and low temperature limiting values of

Griineisen’s gamma compared with theoretical values calculated from pressure depen-

dencies of the elastic constants and of the dielectric constant and index of refraction
in NaCl and KCl

Yo

Material Theoretical

0-25°

0-48°

177>

2:22°

2:92°

1-06°

2:62°

1-22% 1-23f

0-43® 0-52
0-19¢

Si —
Ge —c
Cu 1694
Ag 2:24
Au —
Na —
Al 2-65¢
NaCl 0-93¢
KCl 0-324
RbI —

0-25%
0-49*
1-79¢
22
291%

2-61°
1-09¢
0-31¢
0-14¢

a. DANIELS W.B., Phys. Rev. Letters 8, 3 (1962).

b. CoLLins J.G., PhiI Mag. 8, 323 (1963).

c. G.K. WHITE has measurements down to 0-02 ©, which have not yet levelled off to the “true

T3 limit. Phys. Rev. Letters 10, 234 (1963).

d. WartE G.K., Proceedings Vil International Conference Low Temperature Physics, Toronto:
p.685. University Press (1960); Phil. Mag. 6, 1425 (1961), Proceedings VIII International Conference
Low Temperature Physics, Butterworths, London (1962).

e. ScuueLe D.E. and SmitH Charles S., private communication. Differences between the results
of Schuele and Smith, of Collins and of Sheard in NaCl and KCl are probably due to differences in
selection of raw data from the paper by Lazarus. We have quoted Smith’s selection in Table 2.

f. SHEARD F.W., Phil. Mag. 3, 1381 (1958).

g. DanNieLs W. B., Princeton University, unpublished.

h. GmBeoNs D. F., Phys. Rev. 112, 36 (1958).

j. Corruccini R.J. and GNieweH J.J., Thermal Expansion of Technical Solids at Low Tempera-
tures, National Bureau of Standards, Washington, Monograph 29.

k. Fraser D.B. and Horus-HALLETT A.C., Proceedings VII International Conference on Low
Temperature Physics, Toronto University Press (1960).

ides with surprising results. These are shown in
Table 4 giving the fractional change in volume,

dB
bulk modulus and P for a 300° temperature

dB
change. Note that aP does exhibit even a

stronger temperature dependence than either of
the volume or the bulk modulus proper. If the
-other mode gammas had temperature depend-
encies of this order, it is possible that the calcula-
ted values of y, would be considerably different,
probablylarger than those quoted in Table 3. This

implies, in turn, that the experimentally deter-
mined values of Griineisen’s Gamma have not
in fact been carried down to the ““true 7" region
in which only the elastic continuum states are
excited, and that y; would exhibit a rise at the
lowest temperatures, the entire curve of ygvs. T’
resembling qualitatively then a typical curve of
“Formula Debye Temperature™ vs. temperature
with a very narrow true 7 region, a dip to a
minimum, then arise to a high temperature limit.
Recent measurements by SWENSON ef al.** on
the thermal expansion of Rbl in the range 2 to
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Table 4. Linearly extrapolated fractional changes over the temperature range 300-0°K of
the bulk modulus and its pressure derivative in the alkali halides, from data by Bridgman

Br 0y — 2B 3o0°)
Material VGO —V©) - Br(0) — B300) ap dp ©)

ateria V(300°) s ( A)) BT(3000) s ( A)) dB } s /o

— (300°)

dp

LiF 3 6 13
LiCl 3.7 20 49
LiBr 4-2 25 65
NaF 30 3 —10
NaCl 35 26 39
NaBr 36 23 60
KF 30 4 10
KCl1 33 15 37
KBr 3-5 18 48
KI 347 18 48
RbBr 31 5 14
RbI 36 21 54

8°K do reveal the minimum in Griineisen’s
g, ama which we expect will be a feature ap-
pearing in general in the alkali halides. Since
the values of dC/dP can easily be measured at
several temperatures to check this point quan-
titatively such measuremaits should and will be
made. We have also used the Born—-Mayer model
to attempt to estimate that part of the tempera-
ture dependence of mode gammas due simply to
change in the crystal volume with temperature.
These calculations indicate fractional changes
in mode gammas of the same order as the frac-
tional change in volume. Thus the large changes
in dB/dP measured by Bridgman must, if real,
be due largely to an explicit temperature de-
pendence.

The occurrence of a strong decrease of the
mode gammas with increasing temperature
would also force a revision of our ideas about
the constant high temperature limit of the Griin-
eisen’s gamma observed, for example, to remain
unchanged over the entire range 50-750°C“% in
KCl. The quasiharmonic oscillator model would
predict a decrease in y ; with increasing tempera-
ture if the mode gammas decrease. The observed
constancy of y¢ could only come about if the
anharmonic contribution to the entropy (e.g.
from the “linear term” in C,) had a sufficiently

large-positive volume dependence to maintain a
large value of the thermal expansion coefficient
as the temperature was increased, or that a
vacancy contribution to the expansion was pre-
sent.

GAMMAS OF DISPERSIVE MODES

The critical test of the Quasi Harmonic Os-
cillator model of the thermal expansion of non
metallic crystals requires a knowledge of the
values of y; for dispersive as well as non-dis-
persive modes. We have attempted without suc-
cess to date to obtain directly mode gammas of
certain dispersive modes in silicon and ger-
manium by examination of the effect of pres-
sure on the energies of the “phonon kinks” in
tunnel diode characteristics at liquid helium
temperature. Neutron spectroscopy performed
on crystals at high pressures will in principle
provide all of the information desired. We are
constructing a high pressure vessel for this
purpose and it is to be hoped that such ex-
periments prove feasible.
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